Redis — The AK-47 Of Post-relational Databases

Karel Minarik

Karel Minarik

— Independent web designer and developer
— Ruby, Rails, Git, CouchDB propagandista in .cz
— Previously: Flash Developer; Art Director; Information Architect;... (see LinkedIn)

— @karmiq at Twitter

L karmi.cz

http://karmi.cz
http://karmi.cz

AK-47

noun
a type of assault rifle, originally manufactured in the Soviet Union.

ORIGIN acronym for Russian Avtomat Kalashnikova 1947, the designation of the original model, designed in 1947
by Mikhail T. Kalashnikov (b. 1919).

AK-47

Designed at the end of WW!II by Mikhail Kalashnikov
Assault Rifle, not a “submachine gun”

Simple design

Designed for mass production & low-quality manufacturing

Extreme reliability, at the cost of accuracy

Redis

http://www.youtube.com/watch?v=J6c3DLIMOKA#t=8m32s

Redis

http://www.youtube.com/watch?v=J6c3DLlM9KA%23t=8m32s
http://www.youtube.com/watch?v=J6c3DLlM9KA%23t=8m32s

Reliability

RAADARAARRARAL

WVYIVY nnvnfv'”c‘(”o"”ﬂvﬂwvmmﬁﬂmm

sim-plic-i-ty | sim'plisité |
noun

SIMPLICITY

The Redis Manifesto

We're against complexity.
We believe designing systems is a fight against complexity.

Most of the time the best way to fight complexity is by not
creating it at all.

http://antirez.com/post/redis-manifesto.html Redis

SIMPLICITY

Redis and NoSQL

What's wrong with RDBMS when used for (many) tasks
that don't need all this complexity? The data model: non

scalable, time complexity hard to predict, and can't model
many common problems well enough.

http://antirez.com/post/MongoDB-and-Redis.html

Redis

http://antirez.com/post/MongoDB-and-Redis.html
http://antirez.com/post/MongoDB-and-Redis.html

http://www.youtube.com/watch?v=alKBsqvKpXk#t=7m50s

Redis

Memory is the new disk.
Disk is the new tape.

— Jim Gray

http://research.microsoft.com/en-us/um/people/gray/talks/Flash_is_Good.ppt
http://research.microsoft.com/en-us/um/people/gray/talks/Flash_is_Good.ppt
http://www.infoq.com/news/2008/06/ram-is-disk
http://www.infoq.com/news/2008/06/ram-is-disk

Redis: Main Features

Simplicity Speed
Predictability Versatility

Reliability Low Footprint

& redis

SIMPLICITY
Installation

git clone http://github.com/antirez/redis
cd redis

make

./src/redis-server

./src/redis-cli

Redis

SIMPLICITY

The Zen of Redis

Jimmybot writes: 4
19 Feb 10, 20:23:22

My understanding of redis is that there is no built-in easy index for <i>values</i>.
No index means slow queries/searches. | think that is a very big difference as well,
though not something that can't be changed.

antirez writes: 5
19 Feb 10, 20:24:45

@jimmybot: search Redis "Sorted Sets". It's our Index.

(...) what Redis provides are data structures (...)

http://antirez.com/post/MongoDB-and-Redis.html#c1537 Redis

Data Structures

Strings
Lists

Sets

Sorted Sets

Hashes

Redis

REDIS DATA STRUCTURES

Strings

SET key "value" . zviilion of keys
GET key

=> "value”

DEL key

Redis

REDIS DATA STRUCTURES

Fetch multiple keys at once

SET keyl "valuel™
SET key2 "value2”

MGET keyl key2
=> "valuel”
=> "value2"

Redis

REDIS DATA STRUCTURES

Expiration

EXPIRE key 5
GET key

=> "value”
TTL key

=> 1

GET key

=> (nil)

Redis

Usage

Cache
http://antirez.com/post/redis-as-LRU-cache.html

Sessions
https://github.com/mattmatt/redis-session-store

http://antirez.com/post/redis-as-LRU-cache.html
http://antirez.com/post/redis-as-LRU-cache.html
https://github.com/mattmatt/redis-session-store
https://github.com/mattmatt/redis-session-store

REDIS DATA STRUCTURES

Atomic Increments

GET key
=> nil
INCR key
=> 1
INCR key
=> 2

GET key
=> 2

Redis

Counters (downloads, hits, votes, ...)

$ curl http://example.com/downloads/filel.mpg

INCR
INCR
INCR
INCR
INCR
INCR

downloads
downloads
downloads
downloads
downloads
downloads

:total

:total:today

:total:2011-05-10

: /downloads/filel.mpg:total

: /downloads/filel.mpg:today
:/downloads/filel.mpg:2011-05-10

Usage

Counters (downloads, hits, votes, ...)

Total downloads for server, all time
GET downloads:total

Total downloads for server, today
GET downloads:total:today

Total downloads for file
GET downloads:/downloads/filel.mpg:total

Total downloads for file today
INCR downloads:/downloads/filel.mpg:today

Usage

Counters (downloads, hits, votes, ...)

Nightly maintenance at 23:59
RENAME downloads:total:today \

downloads:total:yesterday

All this runs at super-sonic speed, with minimal overhead and resource consumption.

See implementation for Rubygems.org: https://gist.github.com/296921

However, you'll hit denormalization bloat once you start adding metrics (eg. downloads per
country, per category, ...)

https://gist.github.com/296921
https://gist.github.com/296921

Usage

Variations: Rate limiting

$ curl http://api.example.com/list.json

INCR api:<TOKEN>:hits
=> 1

1f INCR('api:abcl23:hits') > LIM
return ‘nhance Yout
end

Every hour...
DEL api:<TOKEN>:hits

Generating unique IDs

INCR global:users ids
=> 1
SET users:l:username "john"

INCR global:users ids
=> 2
SET users:2:username "mary"

REDIS DATA STRUCTURES

Lists

LPUSH key 1 RPOP key

=> 1 => "1"

LPUSH key 2 LRANGE key © -1
=> 2 => "3"

LPUSH key 3 => "2"

=> 3 LLEN key

LRANGE key 0 -1 => 2

=> "3" LTRIM key © 1
=> 2" => OK

=> "1"

Redis

Indexes (list of comments, ...)
LPUSH article:comments <ID>

Timelines (of all sorts: messages, logs, ...)

LPUSH user:<ID>:inbox "message from Alice"
LPUSH user:<ID>:inbox "message from Bob"

Limit the messages to 100

LTRIM user:<ID>:inbox @ 99

Get last 10 messages

LRANGE user:<ID>:inbox © 9

Get next 10 messages

LRANGE user:<ID>:inbox 10 19

Usage

Queues

Publisher

RPUSH queue "task-1"
RPUSH queue "task-2"

Worker (blocks and waits for tasks)
BLPOP queue ©

Usage

Queues

publisher.sh
for 1 1n {1..10}; do

redis-cli RPUSH "queue" "task-$i"
done

worker.sh
while true; do

redis-cli BLPOP "queue" 0
done

REDIS DATA STRUCTURES

Resque: Background Processing from Github

7

() ... tens or millions of items ...

P4

dOdT

https: ithub.com/defunkt/resque/blob/v1.13.0/lib/resque.rb#1133-138

def pop|gueue)
decode redis.lpop("gueue:¥{gqueus}")
end

Redis

https://github.com/defunkt/resque/blob/v1.13.0/lib/resque.rb#L133-138
https://github.com/defunkt/resque/blob/v1.13.0/lib/resque.rb#L133-138

MESSAGE QUEUES

RestMQ

slole RestMQ - Redis based message queue
| || + [@ hetp: / rwww.restma.com) ¢ Q-

7C0.CC URLShorerme Pmwbosd Souwcecode Big

nclie hasad meassane auele
™ Uio LJJ«-"_ 4 ’_ RN Y '»’ E..‘ \q sJ il !./

About

RestMQ i= a message queue which uses HTTP as transport, JSON to format a minimalst protocol and is organized as REST rescurces.
It stands on the shoulder of gants, built over Python, Twisted, Cyclone (a Tomado implementation over twisted) and Redis
Message queves are created on the fly, as a message is sent 1o them. They are simple to use as a curd request can be

There is a simple JSON-based protocol for those looking for a more formal syntax, but it is not mandatory,

The core idea is to use Redis's LIST type to provide the message ordering, and SETs to index queues. Also each queue has a UUID
genarator 10 provide atomic and unique ids for each queue item

This basic protocol can be implemented in any language. Python and Cyclone were used due 10 the maturity and robustness it offered
but there are work started using Buby and Edang.

The fixed set of operations provides that even different brokers can interoperate in the simplest level (put and take objects out of the
queuwe), thanks to Redis atomic operations

There are MTTP chents for pratically all languages. That's all that it takes 10 use RestMQ within your application. No special protocols or
strateges, just dynamically created queves

Example

A http chent [curd) post 10 /queue:
Paint your browser to hitp./localhost 8868/ches!

Rur:
$ curl -X POST -d ‘queue-:est&vciue-‘ocbc"' http://localhost:BB88/

Your browser is acting as a consumer to the queve. Using json encoded data it's easy to fit the data ino a |s based app

Redis

TALK ON ASYNCHRONOUS PROCESSING

The Code of the Forking Paths

/2 41T445: 4. tyden - K6d, v nEmZ se cestitky rozvétvuji - Windows Internet Explorer

‘.’ v |r http://multimedia. vse.cz/mediajViewer) ?peld=51c06c51 2f4645289c4eSc 749dcESacc1d _:_J 26 4| 12 |
File Edit View Favorkes Tools Help

A € 41T445: 4, tyden - Kdd, v némz se cesticky rozvatvuj | | o} ~

Jak to funguje?

7 T

Slides

Video (in Czech)

Redis

http://multimedia.vse.cz/media/Viewer/?peid=51c06c512f4645289c4e9c749dc85acc1d
http://multimedia.vse.cz/media/Viewer/?peid=51c06c512f4645289c4e9c749dc85acc1d
http://www.slideshare.net/karmi/the-code-of-the-forking-paths-asynchronous-processing-with-resque-and-amqp
http://www.slideshare.net/karmi/the-code-of-the-forking-paths-asynchronous-processing-with-resque-and-amqp

REDIS DATA STRUCTURES

Sets

SADD key 1
=> 1

SADD key 2
=> 2

SADD key 3
=> 3
SMEMBERS key
=> "3"

=> "1"

=> "2"

SISMEMBER key 1
=> "1"
SISMEMBER key 5
=> "0"
SRANDMEMBER key
=> "<RAND>"
SREM key 3

=> 1

Redis

REDIS DATA STRUCTURES

Set Operations

SADD A 1 SADD B 1
SADD A 2 SADD B 3
SMEMBERS A SMEMBERS B
=> "1 n => "1 n

=> "2" => "3"

Redis

REDIS DATA STRUCTURES

Set Operations

Union SUNION A B
=> 1
=> 2
=> 3

Intersection SINTER A B
=> 1

[1,2

[1,2
0 Difference SDIFF A B
=> 2

http://en.wikipedia.org/wiki/Set (mathematics)#Basic_operations Redis

http://en.wikipedia.org/wiki/Set_(mathematics)#Basic_operations
http://en.wikipedia.org/wiki/Set_(mathematics)#Basic_operations

Ad serving

SADD ads:cars "Check out Toyota!"™
SADD ads:cars "Check out Ford!"™

SADD ads:movies "Check out Winter's Bone!™

SRANDMEMBER ads:cars
SRANDMEMBER ads:movies

Note: Time complexity is 0(1). “Check out ODER BY RANDQ)!"

Relations (Friends/followers)
SADD users:A:follows B

SADD users:B:follows C
SADD users:B:follows D

SADD users:C:follows A
SADD users:C:follows D

Usage

Relations (Friends/followers)

Joint network of A and B
SUNION users:A:follows users:B:follows

Usage

Relations (Friends/followers)

Common for A and B
SINTER users:A:follows users:B:follows

Common for B and C
SINTER users:B:follows users:C:follows

Unique to B compared to C
SDIFF users:B:follows users:C:follows

Relations (Friends/followers)

Whom I follow...

SADD friends A SMEMBERS friends
SADD friends B

Who follows me...

SADD followers B SMEMBERS followers
SADD followers C

Usage
Relations (Friends/followers)

Mutual relationships
SINTER friends followers

Who does not follow me back?
SDIFF friends followers

Who am I not following back?
SDIFF followers friends

=SS
Analyzing Data from Facebook, Twitter, Linkedin,
and Othber Social Media Sites

<
Alhs e,
L/

Mining the

Social Web

Mining the Social Web

Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites

O'REILLY" Matthew A. Russell Matthew A. Russell
http://books.google.com/books?id=SYM1lrQdrdsC&lpg=PP1&pg=PA94

http://oreilly.com/catalog/0636920010203 Redis

http://books.google.com/books?id=SYM1lrQdrdsC&lpg=PP1&pg=PA94
http://books.google.com/books?id=SYM1lrQdrdsC&lpg=PP1&pg=PA94
http://oreilly.com/catalog/0636920010203
http://oreilly.com/catalog/0636920010203

Relations (Article tags/categories)

SADD tags:ruby article-1
SADD tags:java article-2

SADD tags:web article-1
SADD tags:web article-2

Relations (Article tags/categories)

ruby OR java
SUNION tags:ruby tags:java

ruby AND java
SINTER tags:ruby tags:java

web AND NOT ruby
SDIFF tags:web tags:ruby

Friends Online

My friends
SADD friends A
SADD friends B
SADD friends C

Friend A connects
SADD online:fresh A

SUNIONSTORE online online:fresh online:stale

Who's online now?
SINTER friends online

Friends Online

Every minute, rename the "fresh” to "stale" ...
RENAME online:fresh online:stale
... and update the "online" set

SUNIONSTORE online online:fresh online:stale

Friend B connects
SADD online:fresh B

SUNIONSTORE online online:fresh online:stale

Who's online now?
SINTER friends online

Usage

Friends Online

Time passes ...

Rename the "fresh"” to "stale", every minute ...
RENAME online:fresh online:stale

... and update the "online" set

SUNIONSTORE online online:fresh online:stale

Who's online now?
SINTER friends online

REDIS DATA STRUCTURES

Sorted Sets

ZADD key 100 A ZREVRANGE key @ -1
ZADD key 10 G 1) "A"
ZADD key 80 B 2) "B”

3) "C"
ZRANGE key © -1 ZINCRBY key 10 C
1) "C" "20"
2) "B”

3) 'IA n

Redis

REDIS DATA STRUCTURES

Sorted Sets

ZREVRANGE key @ -1 ZREVRANGEBYSCORE

WITHSCORES key 100 50
1) "A" 1) "A"

2) "100" 2) "B"

3) "B"

4) "80"

5) "C"

6) "2@ n

Redis

Usage

Leaderboards

User A got 10 points

ZINCRBY scores 190 A

User B got 15 points

LZINCRBY scores 15 B

User A got another 10 points
ZINCRBY scores 10 A

Display scores

ZREVRANGE scores 9 -1 WITHSCORES

Inverted Index

Index document A
ZINCRBY index:foo 1 document-A

ZINCRBY index:foo 1 document-A

ZINCRBY index:bar 1 document-A
Index document B

ZINCRBY index:foo 1 document-B

ZINCRBY index:baz 1 document-B
Search for token foo, sort by occurences
ZREVRANGE index:foo © -1 WITHSCORES

REDIS' SORTED SETS AS AN INDEX

Inverted Index

Simplistic Full-Text Search With Redis' Sorted Sets — Cist

| ‘ I + '(,: https://gist.github.com/928605% ¢ Q-
..... karmi 2
Simplistic Full-Text Search With Redis's Sorted Sets @ - karmi /
..... kﬂl’ml
..... karmi f
Howto . karmi »
..... ul’mi g
‘ : n/9 4.q] P karmi
‘) t L

Resources

L
-
-
.
L
The ruby is a pink to blood-red colored gemstone, a variety of the mineral corundum (aluminium
[e - — — — m—] “»
Ruby is a dynamic, reflective, general-purpose object-oriented programming language that combir
€] « >
“Ruby” is a song by English rock band XKaiser Chicfs and is the lcad track oa their second albux a
v
f - A -

Redis

https://gist.github.com/928605
https://gist.github.com/928605

REDIS DATA STRUCTURES

Hashes

HMSET users:1 username j name John
HMSET users:2 username m name Mary

HGETALL users:1

1) "username"
2) "j n

HKEYS users:1

1) "username"
2) "name"

HSET users:1 score 100

HGET users:1 score
1) "100"

Redis

Structured data (Articles, users, ...)

HMSET articles:1 title "Redis is cool!" \

content "I recently ..." \
published "2011-05-10"

HGETALL articles:1

HSET articles:1 title "Redis is very cool!”

HGET articles:1l title

User Preferences (No login)

Save preferences from <FORM>

HMSET prefs:<COOKIE HASH> background #ccc color #333

Keep it for one year
EXPIRE prefs:<COOKIE HASH> 31556926

Retrieve preferences

HGETALL prefs:<COOKIE HASH>

Publish/Subscribe

SUBSCRIBE log.error
PUBLISH log.error "ERROR"

PSUBSCRIBE log.*

PUBLISH log.error "ERROR"

=> "ERROR™
=> "ERROR"™

PUBLISH log.info "INFO"

=> "INFQ"

Redis

REDIS FEATURES
Durability

BGSAVE
/usr/local/var/db/redis/dump.rdb

BGREWRITEAOF
redis.conf
appendonly yes

http://redis.io/topics/persistence Redis

http://redis.io/topics/persistence
http://redis.io/topics/persistence

REDIS FEATURES

Virtual Memory

redis.conf
vm-enabled yes

Allows to work with data sets bigger then available RAM.
Swaps less often used values to disk.
Keys must still fit into RAM.

Make Redis disk-bound database
vm-max-memory ©

The future? Redis Diskstore (disk-bound by default, cache in between server and disk)

http://redis.io/topics/virtual-memory Redis

http://redis.io/topics/virtual-memory
http://redis.io/topics/virtual-memory

slave.conf
slaveof 127.0.0.1 6379

$ redis-server slave.conf

The future? Redis Cluster (Dynamo-like, Distributed hash table)

http://redis.io/topics/replication Redis

http://redis.io/topics/replication
http://redis.io/topics/replication

REDIS FEATURES

Scripting (experimental)

$ git clone https://github.com/antirez/redis -b scripting redis-scripting
$ cd redis-scripting

$ make

$ echo port 7397 | ./src/redis-server -

$./src/redis-cli

SET myscript "return "HELLO'™

EVAL "return loadstring(redis('get', KEYS[1]))()" \
1 myscript
=> "HELLO"

http://antirez.com/post/scripting-branch-released.html Redis

http://antirez.com/post/scripting-branch-released.html
http://antirez.com/post/scripting-branch-released.html

REDIS RESOURCES

The Interactive Documentation

DO O LPOP - Redis
1 < 1 | + ‘ Mtp://redis.jo/commands/Ipop ¢ Q-

‘credis Commands Chents Documentation Community Downicad Issues

LPOP key

Avalable since 0.07.

. Related commands
Time complexity

O(1)

Removes and retumns the first element of the list stored at key

LINSERT
Retum value -
y: the value of the first element, or nil when key does not exist. LPOP
PUSH
Examples PUSHX
.‘.\\‘i‘;'_
EM
RPUSH mylist “ome" LSET
{integer) 1 LTRIM
RPUSH mylist “two" RPO#
{integer) 2 RPOPLPUSH
RPUSH mylist “three" RPUS
R X

{integer) 3

LPOP mylist

“one"
LRANGE mylist @ -1
) "two
2) hree
PROMPT .
=2 .

Display 2 menu

http://redis.io/commands Redis

http://redis.io/commands
http://redis.io/commands

REDIS RESOURCES

Simon Willison Tutorial

NN

| - l - || 4+ | htp://simonwillison.net/static/2010/redis-tutorial/

Redis tutorial, April 2010 - by Simon Willison

¢ o

Redis tutorial, April 2010

Redis workshop

NoSQL Europe, 22nd April 2010

Simon Willison - Bsimonw - simorwillison.net

These slides and notes were originally written to
accompany a three hour Redis tutorial | gave at the
NoSQL Europe conference on the 22nd of April 2010.

Please post any comments, feedback or corrections to the
accompanying blog entry.

You can find me online at simonwillison.net and @simonw.

What 1is Redis?

* Remote Dictionary Server?

* A key-value store?

* .. but it does list and set operations

* A data-structure server?

Redis is currently one of my favourite open source
projects. | like it because it scales down as well as up - it's
equally useful for tiny projects running on a single VPS as
it is for huge services running across dozens of servers. At
either end of the scale it lets you build things that would be
a lot harder (and more expensive) using traditional tools.

http://simonwillison.net/static/2010/redis-tutorial/

Redis

http://simonwillison.net/static/2010/redis-tutorial/
http://simonwillison.net/static/2010/redis-tutorial/

REDIS RESOURCES

Redis Implementation Details

o O O Redis: under the hood

| « L+ http://pauladamsmith.com/articles/redis-under-the-hood.html C HQ

Redis: under the hood L

How does the Redis server work? .
Redis

I was curious to learn more about Redis's internals, so I've been familiarizing myself with the source, largely
by reading and jumping around in Emacs. After I had peeled back enough of the onion’s layers, I realized I
was trying to keep track of too many details in my head, and it wasn’t clear how it all hung together. I
decided to write out in narrative form how an instance of the Redis server starts up and initializes itself, and how it handles
the request/response cycle with a client, as a way of explaining it to myself, hopefully in a clear fashion. Luckily, Redis has a
nice, clean code base that is easy to read and follow along. Armed with a TAGS file, my sep1ror, and GDB, I set out to see how
it all works under the hood. (Incidentally, I was working with the Redis code base as of commit bqf2e41. Of course, internals
such as I outline below are subject to change. However, the broad architecture of the server is unlikely to change very much,
and I tried to keep that in mind as I went along.)

This article examines server startup and takes a high-level view of the request/response processing cycle. In a subsequent
article, I'll dive in to greater detail and trace a simple ser/cer command pair as they make their way through Redis.

¢ Redis: under the hood
o Startup
* Beginning global server state initialization
s Setting up command table
» Loading config file
* initServer()
» Shared objects
= Shared integers
= Event loop
* Databases
* TCP socket
= Server cron
» Registering connection handler with event loop
* Opening the AOF
* Backuptomain()
= Restoring data .
= Event loop setup v

http://pauladamsmith.com/articles/redis-under-the-hood.html Redis

http://pauladamsmith.com/articles/redis-under-the-hood.html
http://pauladamsmith.com/articles/redis-under-the-hood.html

REDIS RESOURCES

Redis Use Cases

MO O High Scalability - High Scalability - What the heck are you actually using NoSQL for?

| - l > || + Ehup'/,fhsqhscalabﬂny com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosgl-for.htmi

High Scalability

.

~Building bigger, faster, more reliable wéﬁéités.’

HOME START HERE REAL LIFE ARCHITECTURES ALL POSTS ADYERTISING CONTACT

BOOK STORE

RSS

« Sponsored Post: Joyent, Membase, Appirio, CloudSigma, ManageEngine, Site24x7 | Main | GPU vs

CPU Smackdown : The Rise of Throughput-Oriented Architectures »

What The Heck Are You Actually Using NoSQL For?

It's a truism that we should choose the right tool for the job. Everyone says that,
And who can disagree? The problem is this is not helpful advice without being
able to answer more specific questions like: What jobs are the tools good at?

Will they work on jobs like mine? Is it worth the risk to try something new when

all my people know something else and we have a deadline to meet? Howcan I

make all the tools work together?

In the NoSQL space this kind of real-world data is still a bit vague. When asked, vendors tend to give
very general answers like NoSQL is good for BigData or key-value access. What does that mean for
for the developer in the trenches faced with the task of solving a specific problem and there are a
dozen confusing choices and no obvious winner? Not a lot. It's often hard to take that next step and

imagine how their specific problems could be solved in a way that's worth taking the trouble and risk.

Let's change that. What problems are you using NoSQL to solve? Which product are you using? How

is it helping you? Yes, this is part the research for my webinar on December 14th, but I'm a huge

Redis Use Cases

Redis is unique in the repertoire as it is a data structure server, with many fascinating use cases

that people are excited to share.

Calculating whose friends are online using sets.

Memcached on steroids.

Distributed lock manager for process coordination.

Full text inverted index lookups.

Tag clouds,

Leaderboards. Sorted scts for maintaining high score tables.

Circular log buffers.

Database for university course availability information. If the set contains the course [D it has
an open seat. Data is scraped and processed continuously and there are ~7200 courses.
Server for backed sessions. A random cookic value which is then associated with a larger chunk
of serialized data on the server) are a very poor {it for relational databases. They are often
created for every visitor, even those who stumble in from Google and then leave, never to
return again. They then hang around for weeks taking up valuable database space. They are
never queried by anything other than their primary key.

Fast, atomically incremented counters are a great fit for offering real-time statistics,

Polling the database every few seconds, Cheap in a key-value store. If you're sharding your data
you'll need a central lookup service for quickly determining which shard is being used fora
specific user's data, A replicated Redis cluster is a great solution here - GitHub use exactly that
to manage sharding their many repositories between different backend file servers

Transient data. Any transient data used by your application is also a good fit for Redis. CSRF
tokens (to prove a POST submission came from a form you served up, and not a formona
malicious third party site, need to be stored for a short while, as does handshake data for
various security protocols.

Incredibly casy to set up and ridiculously fast (30,000 read or writes a second on a laptop with

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

REDIS RESOURCES

The Original Metaphore...

alelé redis: the AK-47 of databases - flazz.me

] < | | & | #» mtp://flazz.me/redis-the-ak-47-of-databases
v

D |

FLAZZ ME :

«- Back to blog
redis: the AK-47 of databases

TL;DR Redis the AK-47 of databases

Easy

Instaliation was super easy, on a mac:

brew install redis

Starting it up was just as easy

http://flazz.me/redis-the-ak-47-of-databases

http://flazz.me/redis-the-ak-47-of-databases
http://flazz.me/redis-the-ak-47-of-databases

Thanks!

