

History

● 1970, 1980, slow CPU, slow disk, low memory
– start of current SQL databases era
– row storage (optimized for OLTP)
– rule based, statistic based query planner
– "open, get next row, close" executor (pipeline)

● 1990 faster CPU, more memory, slow disc
– same architecture (more memory is used as cache)
– replications

● now, fast CPU, GPU, fast SSD, lot of memory
– same architecture ???
– OLAP, Big Data ???

Row/Page storage

Pipeline Executor

2000-...

● New concepts (NO* ACID, NO* SQL, NO* relational)
– Stream databases - online views
– Memory databases - memcache
– NoSQL databases - KEY/VALUE concepts
– Distributed "cloud" databases - Hadoop
– Array, Raster databases - SciDB, RasDaMan
– Column store databases

* NOT ONLY* NOT ONLY

Column storage databases

● optimized for OLAP
● optimized for Read Only usage
● optimized for CPU
● optimized for star schema - wide tables are ok
● data should be well compressed

● 10-100x faster on OLAP queries
● Fast bulk load, slow individual update

Column/Page storage

MonetDB, LucidDB

● Column storage databases
● ACID databases
● SQL databases
● OLAP databases
● optimization for star schema aggregate queries

LucidDB

● Eigenbase framework - generic database framework

– parser, optimizer, catalog, client in Java
– storage, executor in C++

● Columns are effective compressed on disk
● Page level MGA - best for bulk load (32KB page)
● ETL via JDBC or SQL/MED
● UPSERT is supported - SQL 2003 MERGE
● Cluster pages (more columns)
● Hash JOIN, Hash AGG
● GPL (from 2007)

LucidDB

● Missing consistent documentation
– some parts are undocumented

● Minimal, but friendly community
– zero traffic mailing list, but fast response

● Not completed security
● Without RI, time zones, intervals
● Only JDBC API
● Not well integrated to Linux
● unfriendly tools (console, explain, monitoring)

MonetDB

● Mature column storage memory OLAP database
● Strings are compressed
● Fast simple column operations (CPU optimized)
● Implemented in C
● Mature code base
● Syntax of bulk import is similar to pg COPY

● Depends on system memory management
– not optimized for databases - needs lot of memory

MonetDB
Fast Simple Column Operations

● SELECT (age - 30) * 4
 FROM data
 WHERE age > 30

● for(i =j= 0; i < n; i++)
 if (age[i] > 30)
 x1[j++] = age[i];

● for(i=j=0; i < n; i++)
 x2[j++] = x1[i] - 30;

● for(i=j=0; i < n; i++)
 x3[j++] = x2[i] * 4;

MonetDB

● Needs lot of memory
● MonetDB/X100 commercial fork (VectorWise)

– Integrated to Ingres

– Optimized on CPU cache

– mix vector and pipelined executor

– better usage of memory, faster (similar to native C++)

● Documentation is not complete, some parts are not detailed, new
orientation to scientific databases (arrays)

● Integration to Linux is not complete
● Minimal, but friendly community

– minimal traffic mailing list, but fast response

● unfriendly tools (console, explain, monitoring)

Test - tables

● Customer (30K rows, 6MB)
● Items (45K rows, 7.8MB)
● Orderdetails (16.7M rows, 2.9GB)

– 17 numerics
– 1 PK integer
– 6 FK integers
– 4 integers
– 1 dates
– ALL: 29 columns

Test - query

SELECT items.grouping_id as a1,

 SUM(orderdetails.val1) as m1,

 SUM(orderdetails.val2) as m2

FROM orderdetails , items, customers

WHERE

 (customers.lid IN
(112896,112831,112878,112924,15069,98727,79888,112943,112854,3015860,

112810,112833, 112903,113012,112934,112790,112844,112941,112927,112846,

113004,112892,112858,112841,112774,112989,2886024,71,112771,))

 AND items.id = orderdetails.items_id
 AND customer.id = orderdetails.customer_id
GROUP BY items.grouping_id

Test - results

database label time note

MySQL default, MyISAM 4 min slow nested loop
over MyISAM

MySQL memory engines 35 sec fast nested loop
memory engines
copy to mem
indexes on PK

PostgreSQL 26 sec HASH JOIN,
HASH AGG,

LucidDB 23 sec

MonetDB 14 sec depends on
predicates
complexity
smaller list of custid
-> query is faster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

