
Client side DNSSEC validation

Red Hat

Tomáš Hozza
thozza@redhat.com
2014-05-13



Agenda

1 Motivation

2 Requirements

3 Solution Architecture

4 Conclusion



Section 1
Motivation



Motivation

Motivation

Trusted data in DNS (TLSA, SSHFP, IPSECKEY)

Attacks on plain DNS

Authenticated DNS data for applications

End-to-end DNSSEC validation



Section 2
Requirements



Requirements

Local validating resolver

Requirement for trusted (local) validating resolver

Resolver has to support functionality required by other
requirements



Requirements

Resolver reconfiguration mechanism

Respond to dynamic network changes

Communicate with the system network connection
management system



Requirements

Split DNS configuration

For networks with multiple DNS views

Usually needed for VPN connections

Provided nameservers may not fully support DNSSEC - What
then?



Requirements

Network-provided nameservers probing

Testing functionality of DHCP/VPN provided nameservers

Should support

UDP/TCP query replies
EDNS
AD, DO bits
RRSIG, DS, DNSKEY, NSEC/NSEC3 records

User decides what to do



Requirements

Fall-back configuration

In case network-provided nameservers don’t support DNSSEC
properly

Bypass network port filtering (e.g. using ports 80/443)



Requirements

Captive portal detection

DNSSEC would cause issues

Detect such situation

Proper handling



Section 3
Solution Architecture



Solution Architecture

Solution Architecture

Validating resolver – unbound

Reconfiguration mechanism – dnssec-trigger

Network connections manager – NetworkManager



Solution Architecture

Current situation

NetworkManager

On every network change runs dispatcher scripts

Provides API for reading network configuration

dnssec-trigger

Provides NM dispatcher script

Handles – nameservers probing, captive portal detection,
fall-back configuration, split DNS

Rewrites resolv.conf

unbound

Reconfigured by dnssec-trigger (global forwarders)

Reconfigured by dnssec-trigger dispatcher script (forward
zones)



Solution Architecture

Current situation



Solution Architecture

Future plans

NetworkManager

Use configuration used by previous solution

Provide better and extended configuration possibilities

Rewrite resolv.conf

unbound NetworkManager DNS plugin

Incorporate dnssec-trigger’s (and dispatcher script)
functionality

nameservers probing
captive portal detection and handling
split DNS configuration
reconfigure unbound

unbound

Reconfigured by unbound NetworkManager DNS plugin



Solution Architecture

Future plans



Section 4
Conclusion



Conclusion

Conclusion

End-to-end DNSSEC validation is important for client side
applications using trusted DNS data

Clients and workstations work in dynamic environment and
need special approach

Described requirements on the client side DNSSEC validation
solution

Described solution used in Fedora project

Present – unbound + dnssec-trigger + NetworkManager
Future – unbound + unbound NM DNS plugin +
NetworkManager



thozza@redhat.com


	Motivation
	Requirements
	Solution Architecture
	Conclusion

