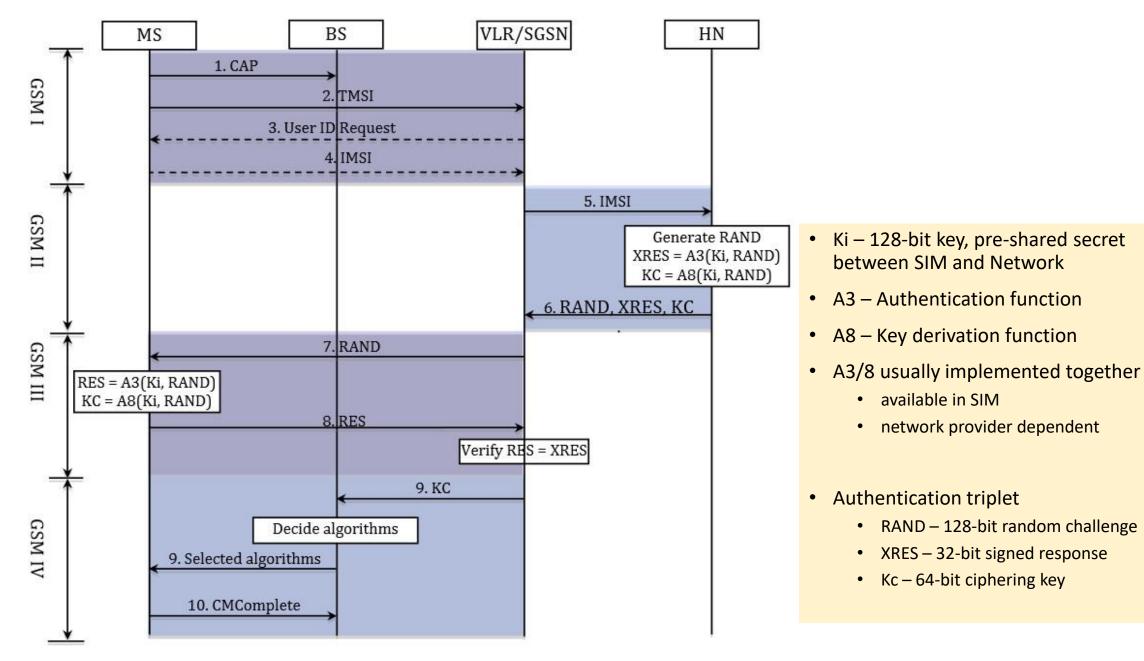

Bezpečnost mobilních sítí (téměř) všech generací

This talk focuses on vulnerabilities that stem from standard itself, not on vulnerabilities introduced by faulty implementation.


2nd Generation: GSM

Source: https://en.wikipedia.org/wiki/GSM

GSM security goals

- Accountability to enable billing
- Confidentiality of user data
- User privacy not possible to track and locate individual user

Source: C. Tang, D.A. Naumann, S. Wetzel, "Analysis of Authentication and Key Establishment in Inter-generational Mobile Telephony", IEEE HPCC & IEEE EUC 2013

Vulnerabilities and attacks

Weak encryption

- Encryption takes place on air interface between MS and BTS
 - No integrity protection, ECC used before encryption -> dependencies between plaintext bits
- A5/0 no encryption
 - Banned by most networks today -> still lot of content not encrypted at all
- A5/1 64-bit stream cipher, LSFR based
 - Primary encryption algorithm of GSM
 - Broken using TMTO attacks, revealing key in seconds (open source tools available – see Kraken and Deka)
 - Known-plaintext attack, predictable plaintext available
 - Ciphertext-only possible, but not necessary

Weak encryption cont.

- A5/2 intentionally weakened variant of A5/1
 - Intended for export, used mostly outside western countries
 - Now deprecated and not implemented in modern phones
 - Broken using Linear cryptanalysis, revealing key in milliseconds
 - Ciphertext-only attack
- A5/3 stream cipher based on KASUMI block cipher, 64-bit block, 64-bit key
 - Transition to A5/3 from A5/1 in recent years
 - 64-bit key, revealing keys in days
- A5/4 added later, similar to A5/3 but requires 128-bit key
 - Not used in the wild
- Packet domain uses different set of algorithms

Passive attacks

- Off-air interception
 - Passive interception using dedicated radios or SDRs
 - Breaking weak encryption algorithms
- Infrastructure interception
 - Encryption takes place on Air interface between phone and BTS
 - Traffic beyond BTS used to be unprotected
 - Tapping backhaul links

Weak key derivation

- A3/8 Key derivation and authentication function
- Standardized interface, implementation may be proprietary
- Example function COMP-128 adopted by most network operators
- Fully leaked in 1998
 - Butterfly structure of compression function
 - Multiple attacks that reveal Ki and enable SIM cloning appeared, narrow-pipe
- 10 rightmost bits are zeroed, which yields keys with only 54-bits of entropy
 - Passive attacks and encryption breaking even easier
- COMP-128v2 introduced still only 54-bits
- COMP-128v3 same as v2 but with full 64-bit length

Attacks on COMP-128v1

- 1998 Goldberg, Wagner, "GSM Cloning", http://www.isaac.cs.berkeley.edu/isaac/gsm.html
 - 6 hours to clone SIM
- 2002 Rao, Rohatgi, Scherzer, Tinguely, "Partitioning Attacks: Or How to Rapidly Clone Some GSM Cards", S&P 2002
 - Side-channel attack, 8 chosen queries
- 2004 Hulton, David, "Smart Card Security", DEFCON 2004
 - 15 minutes to clone SIM

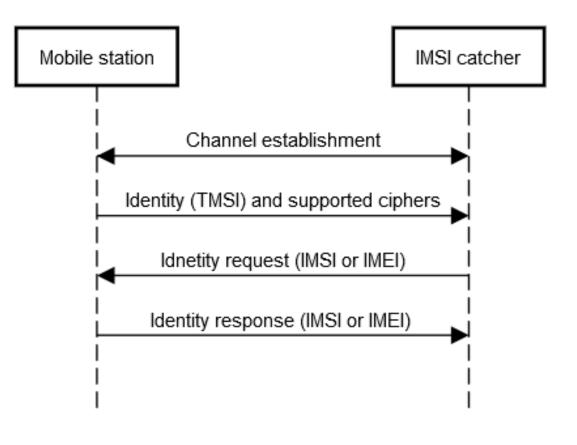
As of now, problem fixed by most of network operators

- Use of proprietary algorithms or new GSM-MILENAGE set of algorithms
- 3G and 4G has own set of algorithms that are secure

Missing integrity protection

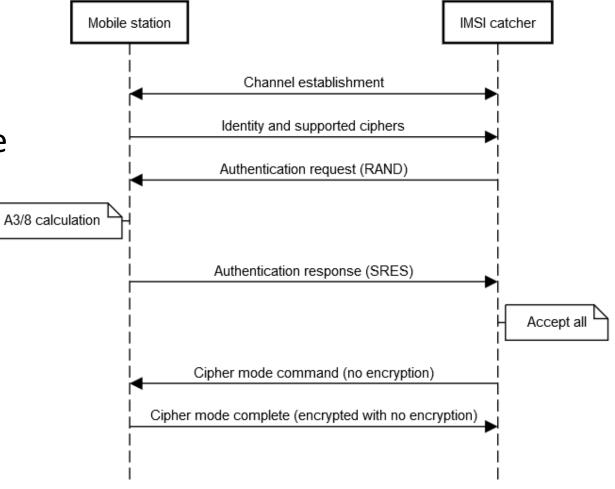
- No integrity protection of messages
- Everybody can modify messages that are sent in plaintext
- Mobile phone declares its classmark set of supported algorithms
- Network selects suitable algorithm from this set
- Attacker can present weak options such as A5/0 or A5/2 on behalf of its victim

Missing authentication of network side

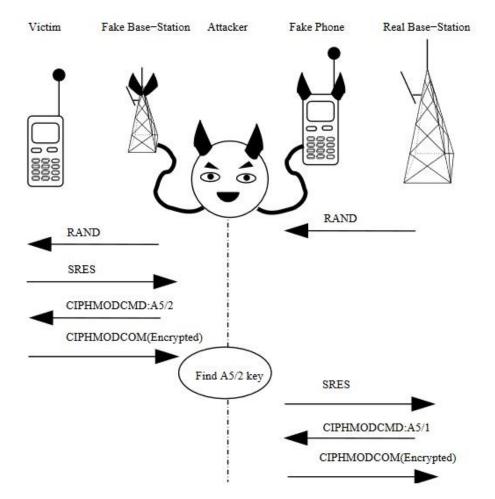

- Phone selects and connects to a BTS with most suitable parameters signal strength, cell capacity, Cell Reselection Offset, ...
- There is no guarantee that the selected BTS is a genuine one
- Originally it was not assumed that an attacker could have technical possibilities to create a fake BTS or fake phone
- Today, anybody with \$20 SDR and a laptop can create his own BTS!
- Attacker can create a fake BTS and achieve a position between a phone and a network
- Large set of Man-In-The-Middle attacks is possible!

Active attacks – IMSI catcher

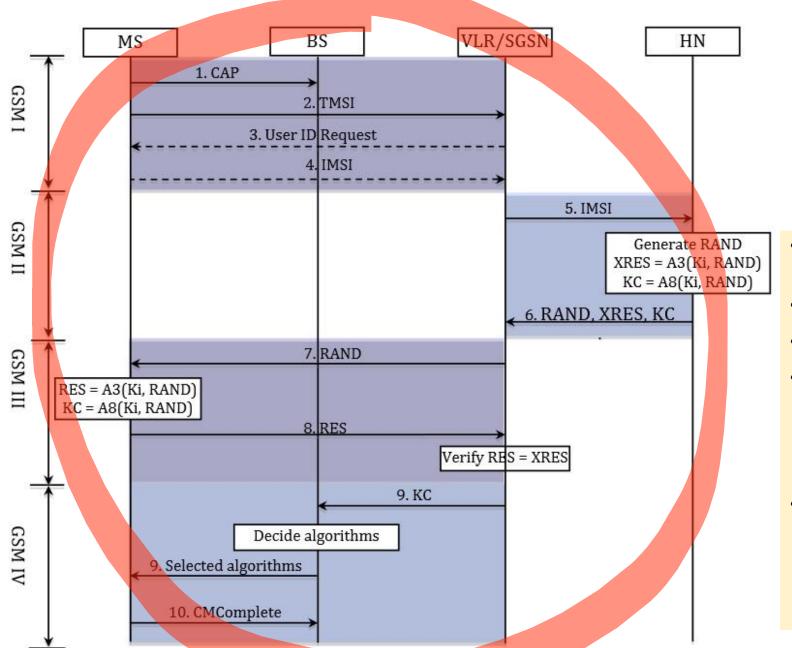
- aka Stingray, aka Cell Site Simulator, aka Agata, ...
- Collection of identities



Source: https://www.cbc.ca/news/technology/imsicatcher-stingray-device-use-report-1.3760675


Active attacks – IMSI catcher cont.

- Encryption can be turned off or weakened
- IMSI catcher controls a victim phone



Active attacks – IMSI catcher – MITM attack

- Key not bound to cipher, can be used in different contexts
- MITM attack practically doable also by breaking A5/1

Source: Barkan, Biham, Keller, "Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication", Technion -Computer Science Department - Technical Report CS-2006-07 - 2006

- Ki 128-bit key, pre-shared secret between SIM and Network
- A3 Authentication function
- A8 Key derivation function
- A3/8 usually implemented together
 - available in SIM
 - network provider dependent
- Authentication triplet
 - RAND 128-bit random challenge
 - XRES 32-bit signed response
 - Kc 64-bit ciphering key

Source: C. Tang, D.A. Naumann, S. Wetzel, "Analysis of Authentication and Key Establishment in Inter-generational Mobile Telephony", IEEE HPCC & IEEE EUC 2013

IMSI catcher capabilities

- Collection of identities and tracking of victims
- Interception and manipulation of calls and SMSs
- Making fake calls to and on behalf a victim phone

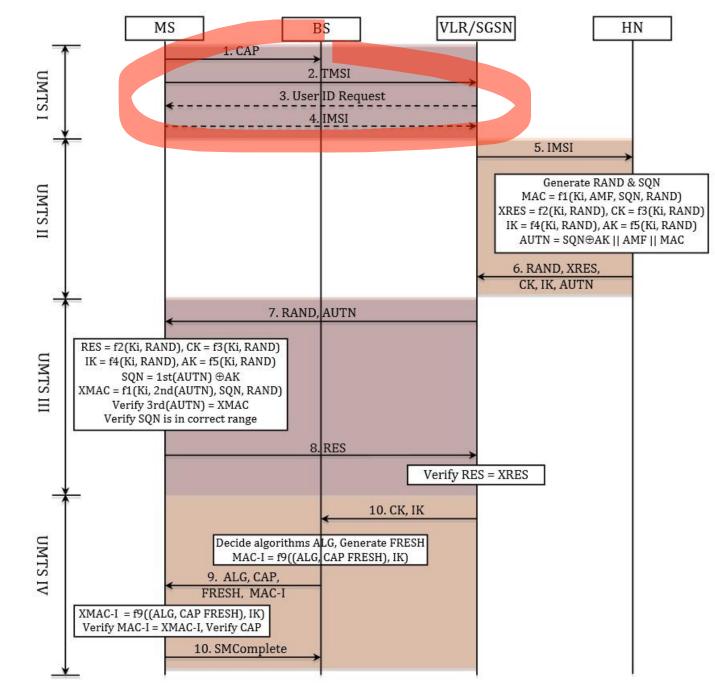
Security goals
X Accountability to enable billing
X Confidentiality of user data
X User privacy – not possible to track and locate individual user

Detection of IMSI catchers

• IMSI catchers are out there

Secret surveillance of Norway's leaders detected

Members of parliament and the prime minister of Norway are being monitored by means of secret espionage equipment.


https://www.aftenposten.no

- Many commercial and open source solutions available to detect them
- Focusing on several indicators (high CRO, suspicious LAC, identity req., ...)
- Problem of false positives and limited data to analyze
- Snoop Snitch by SRLabs
 - https://opensource.srlabs.de/projects/snoopsnitch

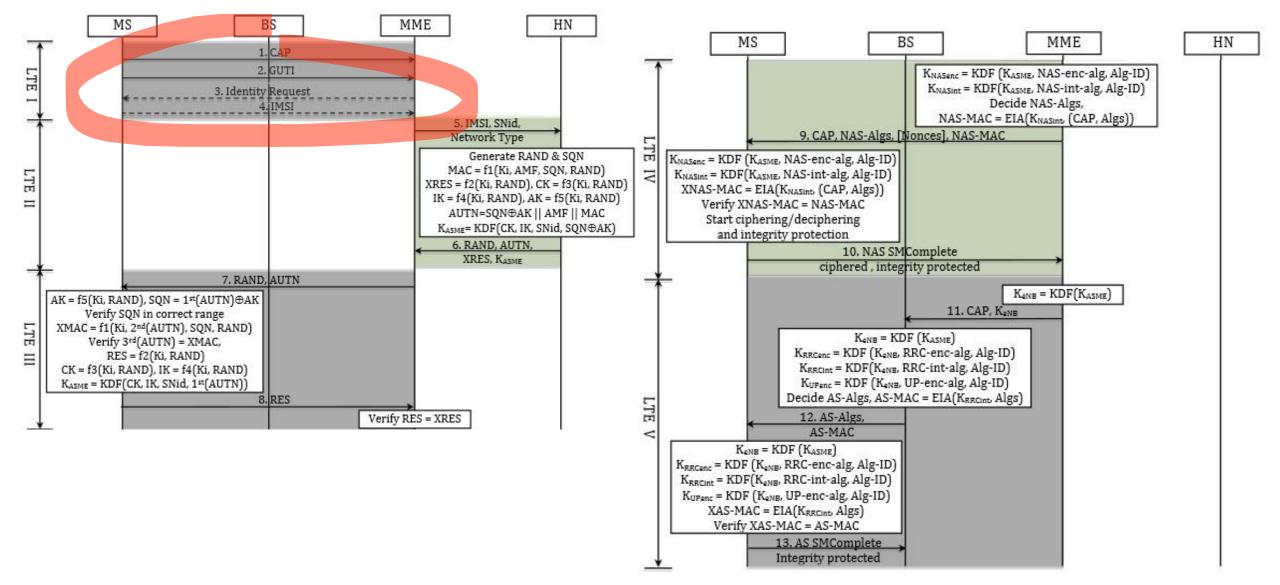
3rd Generation: UMTS

Changes

- SIM becomes USIM
 - New algorithms introduced (MILENAGE set), but old remained
- New encryption algorithms (KASUMI based, SNOW 3G)
- Increased key lengths 128-bits
- Added authentication of network
- Added integrity protection of signaling messages

Source: C. Tang, D.A. Naumann, S. Wetzel, "Analysis of Authentication and Key Establishment in Inter-generational Mobile Telephony", IEEE HPCC & IEEE EUC 2013

Vulnerabilities and attacks


- Lot of commands available prior to AKA handshake
- Collection of IMSI and IMEI still possible
 - IMSI catcher can still ask for identities
- Extraction of GPS coordinates
 - RRLP protocol
- Downgrading to 2G
 - Jamming 3G signal
 - Phone roams to 2G BTS
 - Fake 3G BTS can redirect the victim phone to 2G BTS
 - Routing Area Update Reject, ...
 - Once on the 2G, all the 2G attacks are possible

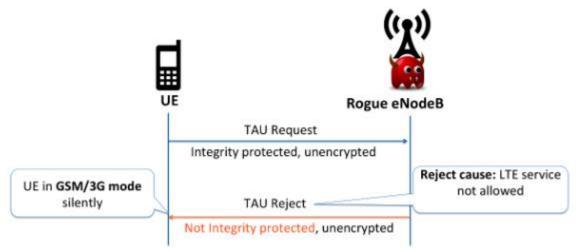
4rd Generation: LTE

Changes

- Access stratum protection (was in 2G and 3G)
 - Protects signaling and user data exchanged between phone and eNodeB (4G name for BTS)
- Introduced Non-access stratum protection
 - Provides integrity and confidentiality of signaling between phone and MME
- DIAMETER protocol replaces SS7 in the core network
- New encryption algorithms (but some algs from 3G remained)

LTE Authentication and Key Agreement

Source: C. Tang, D.A. Naumann, S. Wetzel, "Analysis of Authentication and Key Establishment in Inter-generational Mobile Telephony", IEEE HPCC & IEEE EUC 2013


Vulnerabilities and attacks

- Similarly to 3G lot of commands available prior to AKA handshake
- Collection of IMSI still possible
 - IMSI catcher can ask for IMSI not IMEI
 - IMEI possible to extract due to implementation bug in certain baseband chips
- Extraction of GPS coordinates
 - RRC Connection Reconfiguration specifying 3 or more neighboring cells
 - Phone responses with Measurement Report indicating received signal strength for the cells
 - New phones may include also GPS coordinates

Source: R. Borgaonkar, A. Shaik, N. Asokan, V. Niemi, J.-P. Seifert: LTE and IMSI catcher myths, BlackHat EU, 2015

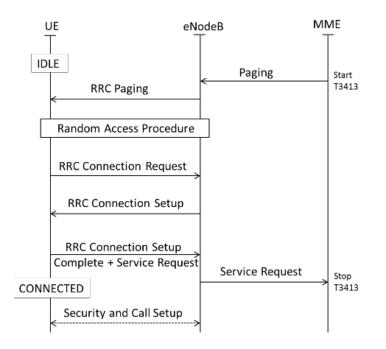
Vulnerabilities and attacks

- Downgrading to 2/3G
 - Jamming 4G signal
 - Phone roams to 3G or 2G BTS
 - Fake 4G BTS can redirect the victim phone to lower technology
 - Tracking Area Update Reject, ...
 - Once on the 2G, all the 2G attacks are possible

Source: A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, J.-P. Seifert, "Practical attacks against privacy and availability in 4G/LTE mobile communication systems", NDSS Symposium 2015

Passive attack on Data Link Layer

- Communication on data link layer is encrypted, but communication pattern still visible when and how often data are transmitted
- Fingerprinting of popular websites traffic pattern and correlation against observed traffic possible
- 50 most popular websites fingerprinted
 - 89% +-10 success rate
- https://alter-attack.net/

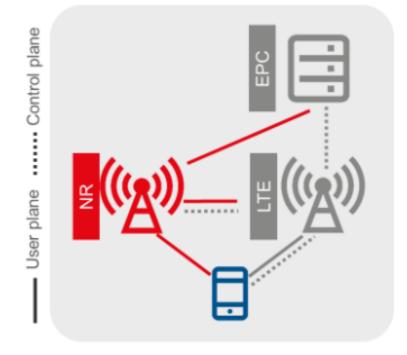

Source: D. Rupprecht, K. Kohls, T. Holz, Ch. Pöpper, "Breaking LTE on Layer Two", S&P 2019

Active attack on Data Link Layer

- Mutual authentication happens on the layers above DLL
- Attacker can establish a relay between phone and network and forward higher layer messages
- Only signaling traffic is integrity protected
 - User traffic only encrypted using cipher in counter mode
- Knowing the plaintext, attacker can do predictable changes to ciphertext
 - Malleable encryption
- Attacker can spoof DNS responses and redirect victim to IP of his choice
- https://alter-attack.net/

Linking of identities

- Network searches for phones in Tracking area using paging
- Sending message over Facebook triggers paging
- Calling the phone triggers Paging
- Attacker can learn GUTI identity
 - LTE equivalent of TMSI, should change often
- Attacker can link various IDs
 - GUTI, IMSI, MSISDN, facebook account , ...


5rd Generation

4G TDD vs NSA vs SA

- 4G TDD (Time Division Duplex)
 - sometimes wrongly referred to as 5G
- 5G NSA (Non-Stand Alone)
 - 4G core network for mobility management + 5G cells with 5G physical layer for wider bandwidth
 - Inherits most of the security issues from 4G
- 5G SA (Stand Alone)
 - 5G core network + 5G cells

5G around us

- As of May 2022, vast majority of 5G installations are 5G NSA (Option 3)
- Inherits vulnerabilities from 4G

Source: GSMA

5G SA - Changes

- Introduced unified authentication framework
 - Access network agnostic cellular network, Wifi, cable, ...
 - 3 authentication methods
 - 5G-AKA, EAP-AKA', EAP-TLS
 - Establishes multiple security contexts for different network types
- SUPI replaces IMSI, never sent in plain
 - Encrypted with home network's public key becomes SUCI
- Home network makes the final decision on authentication
 - Before home network only used to send authentication vectors
- Algorithms remain the same

Build your own testing tool

- SDR Ettus Research USRP B210 or similar
- GSM stacks
 - OpenBTS
 - OsmoBTS + OsmoBSC
- UMTS stack OpenBTS-UMTS
- LTE stacks
 - OpenLTE
 - srsLTE (srsRAN)
 - OpenAirInterface4G
- 5G
 - srsRAN
 - OpenAirInterface5G

Resources

- Project Kraken, <u>https://opensource.srlabs.de/projects/a51-decrypt</u>
- K. Nohl, L. Melette, "GPRS Intercept: Wardriving your country", CCC 2011
- Barkan, Biham, Keller, "Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication", Technion -Computer Science Department - Technical Report CS-2006-07 – 2006
- SRLabs, "Snoop Snitch", https://opensource.srlabs.de/projects/snoopsnitch
- 3GPP TS 33.102, "3G Security; Security architecture"
- C. Tang, D.A. Naumann, S. Wetzel, "Analysis of Authentication and Key Establishment in Inter-generational Mobile Telephony", IEEE HPCC & IEEE EUC 2013
- D. Rupprecht, K. Kohls, T. Holz, Ch. Pöpper, "Breaking LTE on Layer Two", S&P 2019
- R. Borgaonkar, A. Shaik, N. Asokan, V. Niemi, J.-P. Seifert, "LTE and IMSI catcher myths", BlackHat EU 2015
- A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, J.-P. Seifert, "Practical attacks against privacy and availability in 4G/LTE mobile communication systems", NDSS Symposium 2015
- Tobias Engel, "SS7: Locate. Track. Manipulate.", 31c3, CCC 2014